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Abstract:   
In this paper we will study the converging solution of boundary value time fractional 

heat equation involving fractional derivative of order lies between (0,2) and analyze the 
temperature effect on the surface. The solution which is the result of different transform like 
Laplace, Hankel and Fourier at a boundary we will find the equality for parabolic and derivative 
limit. The temperature level for the inner and outer surfaces and upper and lower surfaces will 
keep different while obtaining the solution of boundary value time fractional heat equation. 
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Introduction 

The concept of generalization of classical coupled thermos elasticity, thermos elastic 

behavior of the material without energy dissipation with linear and nonlinear theories, thermal 

stresses of heat conduction problem with time fractional derivatives and generalization of 

thermos elasticity with some limiting cases using fractional calculus etc[11-21] has been studied 

widely in last decade from the research fraternities. 

For the caputo fractional derivative [2] 

 

with Laplace transform 
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By considering this Fractional derivative and its Laplace operator the heat equaion 

 

with the kernel as the basic solution for the heat equation 

 

we consider the heat equation satisfying the deflection function  

 

here  

 

and 𝑀𝑇 as the thermal moment, v is the Poisson ratio, D is the flexural rigidity, the solution 

which was obtained by the Fourier, Hankel and Laplace transform successively is  
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here 𝑎𝑡 and E are the coefficients of thermal expansion and Young modulus, 𝜂, 𝛽 are the positive 

roots of the transcendental equations, 𝐽0, 𝑌0, 𝐸𝛼 are the Bessels and Mittag leffler functions, a,b ,r 

are the real parameters of the range  in interval and the coefficient of the series is 

  

In this article we will take the positive solution of heat equation which is non negative and with 

the help of some results we will find the convergence for such a solution. 

Preliminaries 

 The Borel measure 𝜇 and total variation on |𝜇| with compact set K we will take finite and 

the Gauss Weirstrass integral [21] of measure as 
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which has known result[21] 

 

with  

 

For the solution of the heat equation with the said boundary conditions we have one important 

result [12] 

Theorem:[12] For the positive solution of heat equation  

If 

 

then  

 

and if  

 

then  
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Lemma[19]: suppose 𝜇 is measure in the given real space such that 𝑊𝜇(𝑥0, 𝑦0) is finite at some 

points then 𝑊𝜇 is well define and the solution of heat equation. 

and  

 

Definition: A function 𝜇 is said to have parabolic limit if  

 

where  

 

Definition: A function 𝜇 has strong derivative if  

 

for the open ball B in R 

lemma[21]: A sequence of solution is said to converge a solution if  
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Main Result 

With the help of preliminaries and previous lemmas we will prove the convergence of the 

positive solution at the boundary as follows 

Theorems: let w is the positive solution of the heat equation  

 

having the form  

 

where 
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consider w=u having the boundary measure 𝜇 is finite then following holds 

If there exists 𝜂 > 0, such that  

 

then the strong derivative of µ at zero is also equal to L. 

Proof: 

we consider the open ball the sequence of positive solutions converging to zero and quotient 

 

to prove {𝑀𝑗} is a bounded sequence and every convergent subsequence of {𝑀𝑗} converges to 𝐿 

choose a positive real number 𝑠 such that 𝐵0 is contained in 𝐵(0, 𝑠). Then 

 

Since µ is the boundary measure for 𝑢  
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by the consideration and information with us we have 

 

and since the measure is finite It follows that 𝑢(0, 𝑡2 ) is a bounded function of 𝑡 ∈  (0, ∞). 

Which Implies the boundedness. 

to prove that every convergent subsequence of {𝑀𝑗} converges to 𝐿. We choose a convergent 

subsequence of {𝑀𝑗}, 

let  

 

{𝑢𝑗} is a sequence of solutions of the heat equation, consider the map 

 

Clearly, this map is continuous. As K is compact, image of K under this map is bounded and 

hence there exists a positive real number 𝛼 such that 

 

which follows 

 

Hence, {𝑢𝑗} is locally bounded, we claim by this  
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since the sequence converges to zero as k goes to infinity and u has a limit L 

 

with the help of lemma we can have the result now if  

 

This gives that {𝑊(µ𝑟𝑗𝑘
 )} converges normally to 𝑊(𝐿𝑚) and It follows from Lemma that the 

sequence of measures (µ𝑟𝑗𝑘
 ) converges to 𝐿𝑚 in weak and hence by Lemma (µ𝑟𝑗𝑘

(B)  

converges to 𝐿𝑚(𝐵) for every ball  . Therefore, 

 

This implies that the sequence {𝑀𝑗𝑘 } converges to 𝐿 and hence, so does {𝑀𝑗}. This completes 

the proof. 

 

Conclusion 

 For the said heat equation with fractional derivative, the measure of the Borel gives us the 

convergence of the positive solution of the heat equation on the boundary and its behavior 

convergence is observed, the brief discussion further will be elaborated in the continuous 

discussion for boundary value time fractional heat equation, the parabolic as well as strong 

derivative convergence and equality will be obtained further for the boundary value time 

fractional heat equation.  
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